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ABSTRACT

This paper explores a fully unsupervised deep learning approach for computing distance-preserving maps
that generate low-dimensional embeddings for a certain class of manifolds. We use the Siamese configura-
tion to train a neural network to solve the problem of least squares multidimensional scaling for generating
maps that approximately preserve geodesic distances. By training with only a few landmarks, we show a
significantly improved local and non-local generalization of the isometric mapping as compared to analogous Pg;;ﬁ:ger
non-parametric counterparts. Importantly, the combination of a deep-learning framework with a multidi- Neawork 1 PR Rm =y Networls 2
mensional scaling objective enables a numerical analysis of network architectures to aid in understanding col) 2ol
their representation power. This provides a geometric perspective to the generalizability of deep learning.
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MULTIDIMENSIONAL SCALING , Stress(h) = B(h) = OhP

logE = logC' + Plogh

Classical Scaling: Isomap (Schwartz et al., Least Squares Scaling: SMACOF £(O) = ([|Se(X1) — Se(Xa)|| — d )?
1998, Tenenbaum et al., 2000) (J.D.Leeuw, P Mair, 2011)
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EVALUATION OF VARIOUS SPARSE MDS METHODS

Articulation Manifolds
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Isometric to Euclidean Space! (D.
Donoho, C. Grimes, 2005)
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Main Idea: Perform Classical Scaling on a smaller distance matrix.

2. 9 K < N Interpolate the embeddings of the rest based on geodesic distance
dN 1 dN 2 dN N estimates to the Landmarks
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Farthest Point Sampling distance matrix
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Main Idea: Use the Eigenfunctions of the Laplace Beltrami Operator

to approximate distance functions in a Classical scaling MDS framework E XT E N S I O N S : C O N F O R M A L FI S H B O W L
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Question: Can we redesign the sparse MDS problem with deep learning?
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