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ABSTRACT

We introduce a Schrodinger operator for spectral approximation of meshes representing surfaces in 3D. The _
operator is obtained by moditying the Laplacian with a potential function that defines the rate of oscillation . _ ‘. ‘) G c
of the harmonics on different regions of the surface. We design the potential using a vertex ordering scheme ~—

which modulates the Fourier basis of a 3D mesh to focus on crucial regions of the shape having high-frequency " " " " " " e The Hamiltonian basis can be obtained from the
structures and employ a sparse approximation framework to maximize compression performance. Euler-Lagrange equation of

Cocevoe

THE HAMILTONIAN OPERATOR

with {¢;}* ; € R". L: graph Laplacian, and V:
potential function at vertices m; € II.

SPECTRAL MESH COMPRESSION

min [ (190l + V0?) da.

Yy
o Information of a 3D Mesh comprises of: o Sparse Representations: Spectral truncation | | First eigenfunctions of the LBO on a sphere (top). Po- s.t. (Wi, ) m = 045
o | . uses a restrictive assumption by focusing only | | tential function defined on the sphere and the corre-
1. Connectivity: e.g. mesh triangulation. on the first few frequencies. sponding Hamiltonian basis (bottom) e 1D visualization: L = DT D so
2. Geometry: vertex coordinates in R’ Sparse Coding: Select representation such that o | | H=(WD)TWDwithW = (I+ D" TVD 1)z
X,Y,Z € R™. More challenging to com- the coefficient vector is sparse. ¢ The Hamiltonian Operator acting on a function
press. Let D € R"*" anormalized overcomplete dictio- f over a manifold M is given by:
e Classical Spectral Mesh Compression: Use Zs ty with m atoms d; & R”. u can be obtained Hp(f) = [—Am + V] (f) "-._
spectral geometry of combinatorial Laplacian . .
to encode geometry information: v — Doy — Z d.ov; é/\/l: .The L%Ph(’ﬁ Eeﬁtraml Opfl‘atOr. on M - g
P | (¥) : M = R, called the potential function. Matrix visualizations of the potential function (left),

Discrete eigendecomposition: the standard gradient matrix D (middle) and the ma-

K
U~ ;(u, i) P o is obtained from Hy; = (L + puV)ih = By trix induced from the Hamiltonian (right).

with K < n and (u, ¢;) = ¢ . min[lu — Dall; st [lallo = . OUR APPROACH

e Design the potential function emphasizing dif-

ficult regions using the approximation error of
RESULTS the manifold harmonics. The basis optimally
adjusts its structure to focus on error-prone re-

g10NSs.

e Use a lossless ordering of the simple vertex ﬁ
in accordance to their approximation error to ﬁ
avoid additional encoding.

e Design dictionary using a sequence of opti-
mized Hamiltonians: D; = [, ¥, ..., U, ]

J

Toy example depicting the reconstruction ot 2D coor-
dinates using truncation of eigenvectors of the Lapla-
cian (top) and the Hamiltonian (bottom).

e Use Simultaneous Orthogonal Matching Pur-
suit to approximate the co-ordinate functions

Original (boxed), Laplacian (center) and Hamiltonian (right). Compression ratio = 1:10.
using the atoms of dictionary D.
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