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ABSTRACT
We introduce a Schrödinger operator for spectral approximation of meshes representing surfaces in 3D. The
operator is obtained by modifying the Laplacian with a potential function that defines the rate of oscillation
of the harmonics on different regions of the surface. We design the potential using a vertex ordering scheme
which modulates the Fourier basis of a 3D mesh to focus on crucial regions of the shape having high-frequency
structures and employ a sparse approximation framework to maximize compression performance.

THE HAMILTONIAN OPERATOR

First eigenfunctions of the LBO on a sphere (top). Po-
tential function defined on the sphere and the corre-
sponding Hamiltonian basis (bottom)

• The Hamiltonian Operator acting on a function
f over a manifoldM is given by:

HM(f) = [−∆M + V ] (f)

∆M: The Laplace Beltrami Operator on M
V (x) :M→ R, called the potential function.
Discrete eigendecomposition:

Hψi = (L + µV)ψi = Eiψi

with {ψi}ni=1 ∈ Rn. L: graph Laplacian, and V:
potential function at vertices πi ∈ Π.

• The Hamiltonian basis can be obtained from the
Euler-Lagrange equation of

min
ψi

∫
M

(
‖∇Mψi‖2g + µV ψ2

i

)
da,

s.t. 〈ψi, ψj〉M = δij .

• 1D visualization: L = DTD so
H = (WD)TWD with W = (I +D−TVD−1)

1
2

Matrix visualizations of the potential function (left),
the standard gradient matrix D (middle) and the ma-
trix induced from the Hamiltonian (right).

SPECTRAL MESH COMPRESSION
• Information of a 3D Mesh comprises of:

1. Connectivity: e.g. mesh triangulation.

2. Geometry: vertex coordinates in R3

X,Y,Z ∈ Rn. More challenging to com-
press.

• Classical Spectral Mesh Compression: Use
spectral geometry of combinatorial Laplacian
to encode geometry information:

u ≈
K∑
i=1

〈u, φi〉φi

with K � n and 〈u, φi〉 = φTi u.

• Sparse Representations: Spectral truncation
uses a restrictive assumption by focusing only
on the first few frequencies.
Sparse Coding: Select representation such that
the coefficient vector is sparse.
Let D ∈ Rn×m a normalized overcomplete dictio-
nary with m atoms di ∈ Rn. u can be obtained
as

u = Dα =
m∑
i=1

diαi,

α is obtained from

min
α
‖u−Dα‖22 s.t. ‖α‖0 = k. OUR APPROACH

• Design the potential function emphasizing dif-
ficult regions using the approximation error of
the manifold harmonics. The basis optimally
adjusts its structure to focus on error-prone re-
gions.

• Use a lossless ordering of the simple vertex
in accordance to their approximation error to
avoid additional encoding.

• Design dictionary using a sequence of opti-
mized Hamiltonians: Dj = [Φ,Ψµ1

...,Ψµj
]

• Use Simultaneous Orthogonal Matching Pur-
suit to approximate the co-ordinate functions
using the atoms of dictionary D.

Toy example depicting the reconstruction of 2D coor-
dinates using truncation of eigenvectors of the Lapla-
cian (top) and the Hamiltonian (bottom).

RESULTS

Original (boxed), Laplacian (center) and Hamiltonian (right). Compression ratio = 1:10.

(left) Shape reconstructions for the Fandisk model (12946 vertices). Comparison with Manifold harmonics,
Spectral Graph Wavelets and Hamiltonian basis respectively. Compression ratio = 6:10.
(right) Error vs Compression Ratio for Centaur model (15768 vertices).
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